The Annoying blue bugs of autumn!

Since time immemorial, the entire insect world has seemed intent on either stealing our blood or stinging us or ruining our crops and plants. Either way, they can make life miserable. People spend a lot of time in their yards, planting, pruning, and caring for their landscapes, with the aim of protecting their plants and trees from insects and making sure that they grow beautifully. However, many trees and shrubs have problems with pests such as aphids or other sucking insects. These insects excrete honeydew, a sweet, partially digested plant sap that is a main food of many ants. Plants with these sucking pests not only attract ants, but help feed and grow entire ant colonies. One such type of aphid is the blue ash aphid.

Woolly aphids (1)Blue ash aphids are small, blue-colored insects that come from blue ash trees. They arrive after the first frost of the new winter season melts away every year. These insects are known by several names, conifer root aphid, blue ash aphid, Oregon ash aphid or smoky-winged ash aphid. Aphids feed by piercing host tissue and sucking plant sap through tube-like mouthparts. While removing plant sap, aphids may also inject toxins, plant growth regulators or pathogens along with saliva to aid feeding. Aphids excrete large amounts of honeydew which is essentially unprocessed plant sap. Many insects use honeydew and therefore are attracted to these colonies. The congregations give tree trunks a fuzzy blue appearance that extends up to three feet away from the base. Damage to the roots of fir trees can cause yellowing and stunting of small immature firs.

The blue ash aphids have a similar life cycle as normal, but instead of attacking the above ground parts of the plant they attack the roots of the plant. Like ordinary aphids they suck the sap from the plant thereby weakening it and possibly transmitting viruses and other diseases. When the infestation is heavy the plant or tree will wilt especially on dry days. The leaves may turn yellow and fall prematurely and the plant will be stunted. These pests often go largely unnoticed because they are underground. The damage they do show up mostly when the conditions are dry.

The below article would help understand the situation better.


Blue ash aphids invade Spokane

 Posted: Oct 20, 2009

Kevin Randal

SPOKANE, Wash. – Millions of little blue bugs 7631963_origcan be seen just about anywhere in the northwest.

You’ve probably seen them, there in your face, they invade your yard and many are asking what can be done to stop them.

Experts say the bugs are Blue Ash Aphids that come from Blue Ash Trees in the area. They come after the first frost of the season every year and stay for a couple weeks at least.

Phone calls have been flooding pest control companies and garden shops wanting to know how to get rid of them. Experts tell KHQ local news there’s nothing anyone can do but wait for them to leave.

Trees and plants should not be affected by them because most plant life has gone dormant anyway.

Experts also say they’re not a threat to public health.

The blue ash aphids are more of a nuisance than a threat. They are harmless to humans except for the sneezes they cause as we breathe them in. These pesky little gnat-like insects make breathing a challenge. Since they arrive in large swarms, complete eradication is not worth the time or effort and may be impossible. Thus we need a foolproof solution to deal with these pests.

At C Tech Corporation, we offer a safe and foolproof solution to deal with these tiny insects. Termirepel™ is a non-toxic, non-hazardous product that primarily repels insects from the application. It is a broad spectrum repellent which works against almost 500 species of pestering bugs thus efficaciously fending them away from the application. The best feature of this product is that it is environmentally safe and causes no harm to the insect as well as humans and the environment. It is available in masterbatch and lacquer form, and as a liquid solution. To keep these insects at bay, this product can be coated on the tree trunks in lacquer form. The repelling mechanism of the product would ward off the blue ash aphids and any other insect that could harm our trees.

Attack of the Bagrada Bugs!

At a time when increasing agricultural produce and improving agricultural yield is given paramount importance, our fruits and vegetables have been under siege Bagrada-hilaris2by one more pest. This is the adult Bagrada bug, which goes after winter crops such as cabbage, kale, broccoli, arugula, cauliflower and radish. It sucks the sap out of tender leaves, leaving puncture marks and a stippled or wilted leaf. The Bagrada bug, Bagrada hilaris, also called the painted bug, is a stink bug that attacks various vegetable crops and weedy mustards and is particularly devastating to young seedlings and leafy greens. Native to northern Africa, the Bagrada turned up in the United States in Los Angeles in the June of 2008.

The Bagrada sucks the juices from the bite and leaves a toxic sort of saliva at the scene of the crime that can cause the plant to die even after the bug has left. Further, even if the Bagrada’s sap-sucking ways aren’t fatal, they can cause extensive wilting and yellowing, and stunt the growth of their hosts. These vile pests feed by inserting piercing mouth parts into plant tissues, which creates starburst-shaped lesions on leaves and stems. Continued feeding causes leaf scorch, stunting, blind terminals and forked or multiple heads on broccoli, cauliflower and cabbage. Initial damage to leaves is observed along the margins as stippling, or small tan or white dots left where the leaves were pierced by insect mouthparts and the juices sucked out. If feeding pressure is severe enough, the stippled areas merge and the leaf eventually wilts and dies.

Adding to their nastiness is the fact that Bagradas are capable of flying up wind to find new plants bagrada_bugs_r620x349to feast on, and that they lay most of their eggs in the soil, thus making traditional predators worthless as possible controls. The infestation may be widespread covering the stems and leaves of the tree, leaving fecal droppings on the backsides of leaves. Local growers estimated that in some fields Bagrada bugs caused as much as 35% yield loss in green cabbage and greater than 35% yield loss in red cabbage! In broccoli, damage estimates by growers have ranged from 15‐30% losses due to these insects.


The severity of this issue can be better understood by reading the below article.


Pesky Bagrada bugs expand northward in California


Vicky Boyd

Bagrada bugs, which were first confirmed in California six years ago, have been steadily expanding their range to the east and north.

They now have been confirmed as far north as Yolo County and have taken up residence in counties stretching from Santa Clara and San Mateo west to Fresno and Inyo counties, according to a University of California news release.

The university has tracked the pest’s expansion using citizen scientists.

Bagrada bugs, which have also hit crops in Arizona’s Yuma Valley, prefer cruciferous vegetables, such as cabbage, kale, cauliflower, brussels sprouts and broccoli.

In home gardens, they also have been found on green beans, cantaloupe, corn, peppers, potatoes, tomatoes and sunflowers.

In addition, the bugs have been found on ornamentals, including sweet alyssum, stock and candytuft.

Adult Bagrada bugs are about the size of a watermelon seeds with black backs and white and orange markings.

1Immature nymphs are more round with red, black and white markings. They can be mistaken for ladybird beetles.

Both adults and nymphs have piercing and sucking mouth parts. As they feed, they remove plant sap and cause dead spots plant leaves and stems where they feed.

Under severe infestations, especially with young transplants, the pest can stunt, deform and even kill plants.

Originally it was hoped that Northern California’s colder winter temperatures would help prevent their northerly march.

But bugs simply take up refuge in the top layer of soil around the crops and appear to survive.

The Bagrada bug lays most of its eggs in the soil, so natural predators such as wasps aren’t effective controls. Picking the bugs off plants by hand is not feasible because the infestations are so thick and sudden, with multiple generations occupying one plant at a time. Thus we need a solution which would effectively keep the Bagrada population in check, keeping them away from our vegetables and crops, while at the same time not having any negative impact on the vegetables or the environment.

C Tech Corporation offers a product called Termirepel™, which is a non-toxic, non-hazardous, environmentally safe insect repellent. It can repel more than 500 species of insects on account of it being a broad spectrum anti-insect repellent. The most striking feature of Termirepel™ is that it neither kills the target species, nor the non-target species. It will simply keep the insects away from the application. This product is available in masterbatch and lacquer form, and as a liquid solution. Termirepel™ can be added in mulches or incorporated in agricultural bags and films, which could be used to keep our vegetables and fruits safe and guarded against the pesky Bagrada bugs!

Termirepel™- An effective solution against Spider mites…

2Spider mites are members of the Acari (mite) family Tetranychidae, which includes about 1,200 other species. Spider mites are extremely tiny creatures, less than 1mm (0.04 in) in size and they vary in color. Among plant pests, mites are amongst the most difficult to control, and are responsible for a significant portion of all pesticides used on ornamentals. Individual spider mites are almost microscopic, yet when they occur in large numbers, they can cause serious plant damage. They generally live on the undersides of leaves of plants, where they may spin protective silk webs, and they can cause damage by puncturing the plant cells to feed. Spider mites are known to feed on several hundred species of plants. They lay small, spherical, initially transparent eggs and many species spin silk webbing to help protect the colony from predators; they get the “spider” part of their common name from this webbing. A single mature female can spawn a population of a million mites in a month or less. This accelerated reproductive rate allows spider mite populations to adapt quickly to changing conditions. Usually one should look out for Spider mite damage in the summer months when the temperatures are high and conditions are dry as these conditions are most suitable to spider mite proliferation.

Many different species attack shade trees, shrubs and herbaceous plants. Spider mites attack a wide range of plants, including peppers, tomatoes, potatoes, beans, corn, cannabis, and strawberries. The top of the leaves look like they have a bronze cast to them usually, but sometimes the look may be a silvery cast or even just a dull gray look. When spider mites attack the underside of leaves, we may mistake them for dust as they give a brownish brazen tinge.

5Spider mites lack chewing or piercing-sucking mouthparts. They use a pair of needle-like stylets to rupture leaf cells and then push their mouth into the torn tissue to drink the cell sap. Small groups of cells are killed, which results in a stippling or speckling on the upper leaf surface. On plants which are heavily infested, the foliage will often become gray, yellow, bleached, dry, or bronzed, with leaf drop, loss of vigor and eventual death if untreated. With a magnifying hand lens, cast skins, eggshells, and individual mites as well as mite colonies are visible on the undersides of leaves.

An early sign of infestation is a very fine, light speckling or localized pale yellow spots on the upper surface of leaves. Careful examination of the undersides of affected leaves, preferable with a hand lens or magnifying glass, will reveal colonies of mites. A more generalized bronzing discoloration develops as infestation progresses.

Spider mites continue to be a pest problem in dry beans, soybeans and field corn in droughty areas. When left untreated, spider mites can cause extensive and irreversible damage to soybean foliage, so growers need to keep an eye on their fields – especially if the weather remains dry. Researchers muse that ‘Amino acids are more available to insects when they feed on stressed soybeans instead of healthy soybeans’. This means that the mites can proactively use these nutrients from stressed plants to synthesize proteins for use in their reproduction.

Spider mite damage is typically most visible at first in the most stressed areas of the field; this often includes field edges. Soybean growers are likely to first notice foliar damage in the form of subtle stippling of leaves, which can progress to bronzing.

1If a mite infestation develops, leaves may be severely damaged and the food manufacturing ability of the plants progressively reduced. If an infestation is severe, leaves may be killed. In corn, effects on yield are most severe when mites start damaging leaves at or above the ear level. Infestations may reduce corn grain yields due to poor seed fill and they have been associated with accelerated plant dry down in the fall. The quality and yield of silage corn also may decline due to mite feeding.

Damage is similar in soybeans, and includes leaf spotting, leaf droppage, accelerated senescence and pod shattering, as well as yield loss. Early and severe mite injury left untreated can completely eliminate yields. More commonly, mite injury occurring during the late vegetative and early reproductive growth stages will reduce soybean yields 40%-60%. Spider mites can cause yield reductions as long as green pods are present.

Not just soybean and corn, other crops of great economic importance like coffee beans have to bear the brunt of a mite infestation. Let us look at the following news article:

Spider mites latest threat to Colombian coffee crop

September 06, 2012|Reuters

Colombian farmer Jairo Morales is worried. His coffee trees are speckled with crimson as tiny red spider mites attack his plantation, posing a threat not only to his livelihood but also to output in the world’s No. 3 coffee growing country.

The mites cling to the leaves of coffee plants and gradually turn them reddish until they wither and die.

The threat comes at a time in which Colombia is struggling to raise annual coffee output to 11 million 60-kilogram sacks, the country’s long-term average.

The tiny arachnids have always been a menace to coffee crops in the Andean country, but other predator insects have usually kept them at bay.

“This has been a surprise. I’d never seen anything like this in the many years that I’ve been growing coffee. I often see small areas by the side of the road, but never an attack like this,” Morales said.

Red spider mites have attacked many plantations in Caldas, the No. 4 coffee producing region in Colombia, contributing about 10 percent to the country’s total coffee output.

Morales suspect that the increasing number of spider mites could be a consequence of the ashes that covered the area after the Nevado del Ruiz volcano eruption in June, which apparently killed the insects that prey on the arachnids.

“The risk is that they ‘burn’ the leaves, and it takes a long time for the plants to recover,” said the farmer at his plantation on a mountain slope in the Caldas region.

“If the coffee trees fail to grow branches and flower we’ll lose the crop that we’re about to harvest and we can lose next year’s because they will not flower,” he said.

Crops in the Quindio, Risaralda and Valle del Cauca regions also have been hit, though less severely, according to the coffee grower’s federation.

Colombia, the world’s top producer of high quality arabica beans, has missed its annual coffee production goals for three consecutive years due to torrential rains brought on by the weather phenomenon La Nina.

Heavy rains prevent flowering, which last year resulted in an output of 7.8 million sacks, the lowest in three decades. Production this year is expected to be around 8 million bags.

Moreover due to their ever growing population, spider mites quickly adapt to changes and learn to resist pesticides, so chemical control methods can become somewhat ineffective when the same pesticide is used over a prolonged period. Spider mites are difficult to control with pesticides, and many commonly used insecticides aggravate the problem by destroying their natural enemies. Use of the wrong pesticide at the wrong time can result in a season-long infestation of mites, which will be difficult to control with miticides. Although the labels on common pesticides do include spider mites, they usually contain pyrethroid. Because they contain pyrethroids they will be highly toxic to all beneficial insects such as predatory mites, big-eyed bugs and other insects that would normally prey on the spider mites. What is likely to happen following a pesticide application is that some of the spider mites will be killed and most or all of the predators also will be killed. Very quickly, the spider mites that were not killed by the application will begin to produce eggs, and when those eggs hatch there will not be any predators present to kills the mites. Thus use of conventional pesticides will not effectively deal with the problem, but just might aggravate it further! The conventional pesticides and insecticides can thus not ensure that the problem won’t recur.

Termirepel™ a product by C Tech Corporation can provide much needed relief from this problem. Termirepel™ is a non-toxic, non-hazardous insect and pest repellent. It is effective against a wide array of pests that attack the agricultural sector, some worse and difficult to eradicate like spider mites. Termirepel™ is available in the form of liquid concentrate which can be further diluted and made into a spray, to be sprayed on the plants. Termirepel™ is also available in the form of polymer masterbatches to be added to agricultural films and micro-irrigation pipes during processing. This product will not kill the spider mite population but will just discourage their proliferation as well as return. It is designed in such as a way so as to discourage subsequent attacks. Thus it works on the principle of prevention being better than cure.




Mealybugs damages crops!

downloadMealybugs are common sap-feeding pests that infest a wide range of houseplants and greenhouse plants. Mealybugs are insects in the family Pseudococcidae, unarmored scale insects found in moist, warm climates. Mealybugs occur in all parts of the world. There are about 275 species of Mealybugs known to occur in the continental United States. Mealybugs are common insect pests that tend to live together in clusters in protected parts of plants, such as leaf axils, leaf sheaths, between twining stems and under loose bark. They suck sap from plants and then excrete the excess sugars as a substance called honeydew. This lands on the leaves and stems where it is often colonized by sooty moulds, giving the surfaces a blackened appearance. Mealybugs are active all year round on houseplants and in greenhouses.

images (3)Since mealybugs are hemimetabolous insects, they do not undergo complete metamorphosis in the true sense of the word, i.e. there are no clear larval, pupal and adult stages, and the wings do not develop internally. However, male mealybugs do exhibit a radical change during their life cycle, changing from wingless, ovoid nymphs to wasp-like flying adults. Mealybug females feed on plant sap, normally in roots or other crevices, and in a few cases the bottoms of stored fruit. They attach themselves to the plant and secrete a powdery wax layer used for protection while they suck the plant juices. The males on the other hand are short-lived as they do not feed at all as adults and only live to fertilize the females.

download (2)They are considered pests as they feed on plant juices of greenhouse plants, house plants and subtropical trees and also act as a vector for several plant diseases. Mealybugs are found mainly on greenhouse plants and houseplants, especially cacti and succulents, African violets, bougainvillea, citrus plantsfuchsiagrape vines, hoya, orchids  oleander, passion flowerpeach and tomato. Some other mealybug species can attack outdoor plants, such as ceanothus, laburnum, New Zealand flax and redcurrant.

Mealybugs tend to be serious pests in the presence of ants because the ants protect them from predators and parasites. Mealybugs also infest some species of carnivorous plant such as Sarracenia (pitcher plants); in such cases it is difficult to eradicate them. Small infestations may not inflict significant damage. In larger amounts though, they can induce leaf drop. Infestations are usually first noticed as a fluffy white wax produced in the leaf axils or other sheltered places on the plant. The insects or their orange-pink eggs can be found underneath this substance

Heavy infestations may result in an accumulation of honeydew. This makes plants sticky and encourages the growth of sooty moulds, giving the leaf and stem surfaces a blackened appearance. Damage is caused by mealybugs feeding on host tissues and injecting toxins or plant pathogens into host plants. In addition, mealybugs secrete a waste product, honeydew, which is a syrupy, sugary liquid that falls on the leaves, coating them with a shiny, sticky film. Honeydew serves as a medium for the growth of sooty mold fungus that reduces the plant’s photosynthetic abilities and ruins the plant’s appearance. Feeding by mealybugs can cause premature leaf drop, dieback, and may even kill plants if left unchecked. Severe infestations will reduce plant vigor and stunt growth. Heavy infestations may cause premature leaf fall.

Mealybugs can be found on all plant parts, but especially roots, rhizomes, pseudobulbs, and the underside of leaves. They are adept at hiding on roots and rhizomes deep in the potting media, in crevices and under sheaths. Unlike scales, mealybugs wander in search of feeding places and will leave plants, and hide under rims of pots and trays, in bench crevices, and even drop from overhead plants. Spread of crawlers can occur both indoors and outdoors by floating on breezes or air currents produced by circulating and heater fans. The occurrence of infestation hotspots may be due to crawlers settling on plants where the air currents are the weakest. Similar effects are found with aphids, scales, and spider mites.

There are different kinds of Mealybugs that affect different crops like bamboo mealybug, citrus mealybug, and cotton mealybug. There have been numerous instances of crop damage owing to mealybug all over the world. The most prominent amongst them is the incident reported widely about Bt. Cotton getting affected in India due to mealybugs. The article is as follows:

Bt cotton not pest resistant

Gur Kirpal Singh Ashk, TNN Aug 24, 2007, 02.39am IST

PATIALA: The attack of the mealy bug on the Bt cotton crop in Punjab has stripped it of its aura and destroyed the illusion that it is resistant to all pests. Two years back the Punjab government had described the introduction of Bt cotton as a great achievement. However, this season, the third year after its introduction, thousands of acres in the Malwa region are facing attack by the pest.

Desperate farmers, gripped by panic, are resorting to intensive pesticide sprays and some of them have started ploughing their fields. The state directorate of agriculture has put out advertisements in vernacular daily papers prescribing a list of pesticides for spray to control the bug.

Now agricultural experts have also started saying Bt cotton is not totally free from attacks by pests. Punjab agricultural director BS Sidhu said he or his department had never claimed that Bt Cotton was pest free. “Rather, we had told cotton growers that, except for the bollworm group, other pests could attack Bt cotton like any other cotton crop. Two years back the Punjab government had described the introduction of Bt cotton as a great achievement.

However, this season, the third year of its cultivation, thousands of acres in the Malwa region are facing attack by the pest. Desperate farmers, gripped by panic, are resorting to intensive pesticide sprays and some of them have started ploughing their fields.

The state directorate of agriculture has put out advertisements in vernacular daily papers prescribing a list of pesticides for spray to control the bug.

Umendra Dutt, executive director of the Kheti Virasat Mission (KVM), Punjab, put a question before them that if Bt cotton was safe from only one pest then why was the hype about Bt cotton’s invincibility created. He said earlier cotton seeds were available for Rs 20 to 30 per kg and the farmers were then lured to purchase the Bt cotton seed for Rs 3,600 per kg.

The previous Congress government had put out official advertisements that made tall claims about the advantages of Bt cotton, among them an increase in yield by 25% to 28% per hectare, net increase in income by Rs 10-15,000 per hectare and savings on agrochemicals up to Rs 1,000 per hectare.

Talking to TOI, Dutt claimed within a span of two months Rs 500 crore worth of pesticides to control the mealy bug were sold and, if the trend continues, the total sum may surpass Rs 800 crore.

Apart from pesticides farmers had also applied chemical fertilizers like DAP and urea. “Not only causing huge losses to the already distressed farmers, the mealy bug has destroyed the illusion of Bt cotton’s infallibility.

“As the mealy bug is destroying the cotton crop in Punjab’s Malwa region, in desperation the farmers are intensively spraying pesticides that are toxic and costly on their crop.”


There have been various other reports pertaining to damages caused by mealybugs in the agricultural sector in countries like Thailand, etc. Early in 2008, organic farmer Ram Kalaspurkar of Yavatmal, Maharashtra in India had vivid photographic evidence of mealy bug infestations on demonstration plots of different seed companies in Vidarbha, all bearing the Bollgard label. He was convinced that the mealy bug entered Vidarbha cotton fields through Bt cotton seeds imported from the US.

Kalaspurkar described how, when the cotton plants died at the end of the season, the mealy bug moved to nearby plants such as the Congress weed. By mid-June when farmers were ready to plant the new cotton crop or another crop, the bug had multiplied enormously.

A year later, scientists at the Central Institute for Cotton Research (CICR) in Nagpur, India, corroborated Kalaspurkar’s findings, reporting widespread infestation of an exotic mealy bug species on Indian cotton. The scientists conducted a survey at 47 locations in the nine cotton-growing states, and found two mealybug species infesting the cotton plants from all nine states: the solenopsis mealy bug, Penacoccus solenopsis, and the pink hibiscus mealy bug, Maconellicoccus hirsutus. However, P. solenopsis was the predominant species, comprising 95 percent of the samples examined. Furthermore, the scientists confirmed that P. solenopsis is a new exotic species to India originating in the US, where it was reported to damage cotton and other crops in 14 plant families.

During 2006, the mealy bug caused economic damage, reducing yields by up to 40-50 percent in infested fields in several parts of Gujarat.   At around the same time, mealy bug infestations were found in all the nine cotton-growing states: Punjab, Haryana, Rajasthan, Gujarat, Madhya Pradesh, Maharashtra, Tamil Nadu, Andhra Pradesh and Karnataka. Severe economic damage was reported in 2007 in four districts of Punjab, two districts of Haryana, and low to moderate damage in parts of Maharashtra, Tamil Nadu and Andhra Pradesh. Nearly 2 000 acres of cotton crop were destroyed by the mealy bug by mid-July 2006, and over 100 acres of bug-infested Bt cotton was uprooted in Arike-Kalan village in Bathinda. A report published by the Centre for Agro-Informatics Research in Pakistan in 2006 also stated that the exotic mealybug P. solenopsis had destroyed 0.2 million bales and 50 000 acres of cotton area across Pakistan, especially in Punjab and Sindh provinces. It warned that the pest was still increasing, and could result in an epidemic in the cotton-growing areas if unchecked.

Thus is the unstemmed devastation caused by this tiny bug. Methods hitherto used to combat this menace include the use of toxic pesticides, which come with their own set of cons. A effective and green solution needs to be devised to counter this destruction. Termirepel™, a product by C Tech Corporation aims to do just that. Termirepel™ is a non-toxic, non-hazardous insect and pest repellant. It can be best described as a termite aversive. It is effective against a multitude of other insects and pests like weevils, beetles, thirps, bugs, etc. It works on the mechanism of repellence and therefore does not kill the target as well as non-target species. Being non-toxic, it does not harm the soil and environment. Termirepel™ can be added to a thin agricultural film to protect cotton and other crops. It can also be incorporated in irrigation pipes to ward of pests.




Prevent apple sawflies from destroying our apples in a non-toxic way!

Apples are easy to grow, productive, and there are shapes and sizes for every download (1)garden. They can be susceptible to a range of pests, diseases and disorders, but in most cases action can be taken to prevent or control the problem. It is a melancholy fact that the apple is attacked by a wide range of pests and diseases which at worst can reduce the crop to zero, and damage or even kill the tree. We learned this the hard way. It’s true that you can get some sort of crop by leaving nature to itself, but for consistent quality, and some years to get even one clean apple, you need to understand and outwit the little beasties and bugs. Apple sawfly is one among the many perpetrators of apple damage.

download (3) Adult apple sawflies are small insects with blackish brown heads and thorax and brown abdomens. The caterpillar-like larvae initially tunnel beneath the skin of the developing apples, causing a scarring and then further damage.

When apple trees are in flower, the sawfly, Hoplocampa testudinea, lays its eggs in the developing fruit. In June, the larvae tunnel their way under the skin of the fruit and into the core, causing the images (3)apples to fall. When they’re ready, they tunnel out of the apples, creating a second hole, and then bury themselves in the soil to pupate. Sometimes the larvae die and don’t make it to the middle of the apple, in which case the apples mature, but they’ll have ribbon scars and are sometimes misshapen.

European Apple sawfly overwinters as a mature larva in a cocoon a few centimeters below the soil surface. The larva pupates in the spring and adults emerge during the pink stage of apples. The female European apple sawfly lays eggs just after the king flower opens. Each female lays about 30 ph1-35deggs singly in the opening flowers. Eggs are deposited singly at the calyx end of the flower, often at the base of or between the stamens. Sap seeps out of the wound made by the female when laying her eggs.   It turns red/brown and can be a good early warning of an attack.  A larva hatches after two weeks, newly hatched larva burrow into the apple and feed on tissue just below the skin. As the larva matures, it tunnels deeper into the seed cavity and feeds on one or two seeds. Once under the skin of the fruitlet it tunnels in the surface layer before it burrows into the core. If it does not reach the core it still causes superficial damage which results in the characteristic curved scars. It tunnels out an area of the fruit, filling it with wet brown droppings or frass. Larvae may move on and attack two or three apples, and sometimes more than one grub is found in a single fruit. Often the fruitlets attacked later have masses of frass at the eye where the entry hole was made. After two weeks’ feeding, the larvae leave the fruit to overwinter in the soil. There is one generation per year. Diapause  stage may last for up to three years.

First instar larvae feed beneath the fruit skin and create a heavily russeted, images (1)winding, ribbon-like scar that spirals out from the calyx end. If larva ceases feeding at this early stage, for whatever reason, this damage will likely be seen on mature fruit at harvest. If this tunneling stops early, tunneling scars are short and indistinguishable from damage caused by the tarnished plant bug. Second instar larvae tunnel into fruit towards the seed cavity. Reddish-brown frass is often seen protruding from an exit hole in fruit (Figure 4-60). Larval feeding into the core of the apple often causes fruit to abort, while sub-surface feeding creates scars visible on the fruit at harvest.

As the larva molts and matures, it moves towards the seed cavity or adjacent fruit. As the larva feeds internally, it enlarges its exit hole with wet, reddish-apples_dock-sawfly_02_zoombrown frass on the side of the fruit. The larva moves to other fruit in the cluster to continue feeding. A single larva can damage several apples. Damaged fruit drops during the “June drop” period. Fruitlets that suffered only initial feeding damage by a larva will stay on the tree and develop as fruits. These fruits are misshapen and have a long ribbon-like scar about 4mm wide, often starting at the eye end of the fruit and extending around the circumference.

The European apple sawfly is an introduced pest that was first noted in North America infesting crabapples on Long Island and Vancouver Island during 1939 and 1940, respectively. Since then it has spread into southern New Jersey, Vermont, New Hampshire, and the Southern Tier of New York State. The pest is especially troublesome in the apple-growing regions of Massachusetts, Connecticut, Rhode Island, and the Hudson Valley of New York. In the Pacific Northwest, the European apple sawfly appears to be limited to Vancouver Island. The pest is distributed over the entire continent of Europe but is most common in the north. It is found throughout England but is abundant only in certain localities. The larvae feed on all apple and crabapple varieties but show a preference for early or long-blooming varieties with a heavy set of fruit. Sawflies are primitive hymenopterous insects and are related to bees, wasps, and ants. Although two generations a year have been reported in England, only one seems to occur in populations in North America.

The apple sawfly now occurs in almost all the apple orchards. In 1988, it cause near about 14% of damage in the commercial apple orchard in Quebec. 

Let’s take a look at the following article which shows how apple sawflies are a nuisance;


Battling European sawfly and powdery mildew

By Dan Woolley | Apr 2011

Nova Scotia Fruit Growers’ Association (NSFGA) members recently received some expert advice on how to deal with two increasingly prevalent problems in Annapolis Valley orchards – European sawfly and powdery mildew

European sawfly
lloErika Bent, who operates Agricultural Pest Monitoring, told attendees of the recent NSFGA annual meeting the European sawfly was only an occasional problem in Nova Scotia until 2005 and 2006. By the 2008 harvest, fruit injury level ranged from zero to six per cent. Six per cent is “quite high” for one insect, said Bent.

Sawfly larvae overwinter in the soil, pupate in the spring and emerge as adult flies just before the apple trees bloom to lay their eggs in apple buds and blossoms, Bent explained, adding it takes eight to 10 days for the sawfly’s eggs to hatch. Within four weeks, they are fully grown larvae feeding on the fruitlets.

Growers can reduce sawfly damage by applying insecticide when the larvae are moving from fruitlet to fruitlet, said Bent, who during trapping research in 2007 began capturing adult sawflies about May 22 and spotted their first eggs by June 5. She recommends spraying for sawfly at the time apple blooms are opening.

Control is difficult, Bent admits, as growers cannot spray for the adult sawfly during bloom. Instead, she suggests spraying as close as possible to the bloom to reduce the adult insects, then spraying again after the bloom to stop the larvae from moving between the developing fruit.

Currently, there are two insecticides registered for sawfly in Canada, Bent explained, and one of them – Guthion – is being phased out, leaving Assail as the only control for sawfly.

Quebec and Ontario are introducing a predatory parasite for European sawfly, but it is not a stand-alone control, she said.

The saying goes, “An Apple a day keeps the doctor away”. But now the case has become that the apple themselves need a doctor to keep them safe from vicious pests like apple sawfly. Conventionally people use two methods to fight this problem. One is to physically remove the tainted apples from the orchards so that the other apples do not get infected. Following this method is very tiring and is not at an efficient method to protect the apples from pests. The other method is using toxic and hazardous insecticides. Use of insecticides is harmful as these chemicals generally find their way in the food chain and harm living beings.

Termirepel™; a solution of C Tech Corporation is both effective and efficient and it does not harm target or non-target species. Termirepel™ is a non-toxic, non-hazardous and environment friendly product which works against pests like termites, ants, beetles and near about 500 species of other insects including apple sawfly. Termirepel™ is available in masterbatch form and can be incorporated in agricultural film and mulches to protect the plantation. It is available in liquid form and can be sprayed around the apple trees.

Termirepel™ works on the mechanism of repellence and is the best green solution available to protect fruits, crops, vegetation from the voracious pests.

Colorado potato beetles at large!!

Haldane discussed the prevalence of stars and beetles in his book “What is life?” published in the 1940s;

_69607665_thinkstock106564984“The Creator would appear as endowed with a passion for stars, on the one hand, and for beetles on the other, for the simple reason that there are nearly 300,000 species of beetle known, and perhaps more, as compared with somewhat less than 9,000 species of birds and a little over 10,000 species of mammals. Beetles are actually more numerous than the species of any other insect order. That kind of thing is characteristic of nature.”

One among the 300,000 species is Colorado potato beetle. An adult beetle is around 10mm long and is orange or yellow with black or brown stripes. The beetle’s main food is potato leaves – a single larva can eat 40 sq cm of leaf per day.

Colorado_potato_beetle_lgThe pretty yellow-and-black-striped Colorado potato beetle is native to wild Solanaceous plants of the semi-arid western United States. Colorado beetles are a serious pest of potatoes.. Both adults and larvae feed on foliage and may skeletonize the crop. . The problem with it began when the beetle broadened its gustatory interests to include cultivated plants in the same family, such as potato, eggplant, and tomato.

Going through the life cycle of the Colorado potato beetle, in late summer, Colorado potato beetles fly to nearby wooded areas and overwinter beneath bark or other cover. In mid-spring, they emerge and walk until they find potatoes or another suitable host plant. After a little light feeding, mated females lay clusters of orange eggs on leaf undersides. The eggs hatch about two weeks later, and the larvae feed for a couple of weeks before entering their pupal stage. In cool weather the entire life cycle can take 45 days or more, but 30 days is more typical. This means that a second generation can emerge at the perfect time to sabotage midseason potatoes.

kg26-colorado-potato-beetle-01_lgColorado potato beetle causes heavy monetary damages. The article named “Last Meal for Colorado potato  beetle?” in USA Agriculture department gives the estimate of the economic loss due to the species, “The pest’s larvae devour the leaves of eggplant, tomato and potato plants, causing $150 million annually in crop losses and chemical control expenses”

The problem of Colorado potato beetle is mentioned in yet another article,

Some Growers Say Potato Beetle Becoming Intractable Problem

Anecdotal evidence suggests the Colorado potato beetle has increased its range in Estonia, and some farmers say the situation is dire, especially as the state declassified the colorful bug as a dangerous pest in 2011.

With potato fields flowering, ETV reported on one Saaremaa island field where the beetle had not been seen before, but which is experiencing a major infestation.

Officially, the farmers are advised to manually pluck the larvae and repeat every day, and only resort to pesticides for larger infestations.

There are some areas of Saaremaa where the beetle is well-established and can’t 220px-Potato_beetle_larvaeapparently be eradicated, farmers said.

Aadu Grepp, one farmer, said that beetles could be found on every fourth or fifth stalk in his fields.

“You have to spray with some toxin at the right time to get rid of it. In a couple days, it will eat a plant, leaving just a stalk.” He said it had been that bad for two or three years. “The bug hatches from the soil and and there’s nothing to do, the only cure is chemicals. There’s so many and it will return in a week or so.”

Grepp sprays his fields several times a year and said some Leisi growers had stopped planting potatoes.

The areas on Saaremaa affected tend to be on the coasts, as the adult beetle gets an assist from the wind. The biggest potato grower on the island, Guido Lindmäe, who has 22 hectares in the interior, says he yet to see a live beetle.

Opinions vary on whether the mainland is worse off. The Crop Research Institute’s Luule Tartlan says it is worse, while the Agricultural Board says that the potato beetle has ceased to be considered a dangerous pest as of 2011.

220px-Kartoffelkaefer_fg01eThe Colorado potato beetle have shifted from its original wild hosts in southwestern North America, it has spread throughout the rest of the continent and has invaded Europe and Asia. Currently its distribution covers approximately 14 million km2 around the world. It has also started appearing in central Asia, western China and Iran. They have started appearing in new regions because of heavy export from the infected area.

Insecticides are currently the main method of beetle control on commercial 78farms.Colorado potato beetle has a legendary ability to develop resistance to a wide range of pesticides used for its control. Plants in the family Solanaceae, which are natural food sources for this insect, have high concentrations of rather toxic glycoalkaloids in their foliage. These toxins protect them from a wide range of herbivores. However, the Colorado potato beetles evolved an ability to overcome toxic defenses of its hosts. Apparently, this ability also allows them to adapt to a wide range of human-made poisons. Also, high beetle fecundity increases the probability that one of the numerous offspring mutates, just as buying 800 lottery tickets increases probability of getting a winning one compared to buying 8 lottery tickets.

Resistance mechanisms in the Colorado potato beetle are highly diverse even within a relatively narrow geographical area. Furthermore, the beetles show cross-resistance to organophosphates and carbamates, and multiple resistance to organophosphates, carbamates, and pyrethroids.

The immune powers of Colorado potato beetle have forced humans to look for solutions above the hazardous insecticides. C Tech Corporation provides a solution Termirepel™ which is very effective, long lasting and Green. The most important unique quality of the product is that it is non-toxic, non-hazardous and environment friendly. Termirepel
™ helps keep termites, ants and 500 other species at bay and protects the application. They can be incorporated in agricultural films, mulches and irrigation pipes to protect the crops from the vicious pests. The product is available in the form masterbatch as well as liquid solution and is compatible with most the base polymers. The most important quality of the product is that it does not kill the target species but repels them.

Pests threatening global food Security!!

The dark cloud of pests looming over the agriculture sector is spreading and images (1)increasing at an alarming rate! Pests, considered as an age old enemy of agriculture, continue to thwart the sector by destroying the crops. Though tiny, they are capable of large scale destruction. They appear in large numbers, attack the vegetation and many times destroy the entire field or the produce. On average the pests are known to cause 10-16% agricultural produce loss. Toxic and hazardous pesticides of worth million dollars are used to curb this pest problem to little effect.

Moreover, the pests have now started moving to regions, previously unsuitable for their existence, because of global warming. It has been reported that pests are imagesspreading towards the North and South Poles at a rate of nearly 3 km a year! This poses a great threat to global food security. With the increasing population, the demand for the food supply is increasing rapidly. In the midst of such situation, the report that the pests are spreading across the globe is surely alarming. The threat posed by these vile pests could lead towards a chaotic situation endangering the global food security. Let’s take a look at the following article which reports the spread of the pests;

Spread of crop pests threatens global food security as Earth warms

A new study has revealed that global warming is resulting in the spread of crop pests towards the North and South Poles at a rate of nearly 3 km a year.

The study, published in the journal Nature Climate Change and carried out by researchers at the University of Exeter and the University of Oxford, shows a strong relationship between increased global temperatures over the past 50 years and expansion in the range of crop pests. Currently 10-16% of global crop production is lost to pests. Crop pests include fungi, bacteria, viruses, insects, nematodes, viroids and oomycetes. The diversity of crop pests continues to expand and new strains are continually evolving. Losses of major crops to fungi, and fungi-like microorganisms, amount to enough to feed nearly nine percent of today’s global population. The study suggests that these figures will increase further if global temperatures continue to rise as predicted.

The spread of pests is caused by both human activities and natural processes but is thought to be primarily the result of international freight transportation. The study suggests that the warming climate is allowing pests to become established in previously unsuitable regions. For example, warming generally stimulates insect herbivory at higher latitudes as seen in outbreaks of the Mountain pine beetle (Dendroctonus ponderosae) that has destroyed large areas of pine forest in the US Pacific Northwest. In addition, the rice blast fungus which is present in over 80 countries, and has a dramatic effect both on the agricultural economy and ecosystem health, has now moved to wheat. Considered a new disease, wheat blast is sharply reducing wheat yields in Brazil.  

Dr Dan Bebber from the University of Exeter said: “If crop pests continue to march polewards as the Earth warms the combined effects of a growing world population and the increased loss of crops to pests will pose a serious threat to global food security.”

Professor Sarah Gurr from the University of Exeter (previously at the University of Oxford) said: “Renewed efforts are required to monitor the spread of crop pests and to control their movement from region to region if we are to halt the relentless destruction of crops across the world in the face of climate change.”

The study used published observations of the distribution of 612 crop pests collected over the past 50 years. It revealed that the movement of pests north and south towards the poles, and into new previously un-colonised regions, corresponds to increased temperatures during that period.  

The study was funded by the HSBC Climate Partnership and Earthwatch.

Date: 1 September 2013

The above article presents a grave picture of the growing pest problem in the agriculture sector. We cannot stop these pests from spreading across the world, but we can protect our crops from their wrath. We need to adopt an environment friendly full proof solution to tackle the pest problem. Termirepel™, a product of C Tech Corporation is an ideal solution to combat the pest problem as it is extremely low toxic in nature, works effectively and efficiently against the pests and have very low environmental implications. It works on the mechanism of repellence and does not harm target or non-target species. In masterbatch form it can be incorporated in agriculture films, mulches, tarpaulins to protect the crops from the vile pests. It can also be incorporated in storage bags to protect the produce. In coating form in can be coated near the storage areas to make them pests free. It is high time that we adopt the use of safe measures to fight the problem of pests.


Gall wasps destroying trees…

downloadAnother teeny tinny insect is here to cause unprecedented and huge damage to our trees and plants. The gall wasps, also called gallflies, are a family (Cynipidae). Their common name comes from the galls they induce on plants for larval development. About 1300 species of this generally very small creature (1-8 mm) are known worldwide, with about 360 species of 36 different genera in Europe and some 800 species in North America.

download (1)The larvae of most gall wasps develop in characteristic plant galls they induce themselves, but many species are also inquilines of other gall wasps. The plant galls mostly develop directly after the female insect lays the eggs. The inducement for the gall formation is largely unknown; discussion speculates as to chemical, mechanical, and viral triggers. The hatching larvae nourish themselves with the nutritive tissue of the galls, in which they are otherwise well-protected from external environmental effects. The host plants and the size and shape of the galls are specific to the majority of gall wasps, whereas about 70% of the known species live in various types of oak trees. One can find galls on nearly all parts of such trees, some on the leaves, the buds, the branches, and the roots. Other species of gall wasps live in eucalyptus treesrose bushes or maple trees, as well as many herbs. Frequently, the determination of the species is much easier through observation of the galls produced rather than the insect itself.

gall provides the developing gall wasp with a safe refuge for the most vulnerable stage of its life cycle, but many other wasps have found a way to penetrate this defense and parasitize the larvae within. Some of these parasitoids use their long, hardened egg-laying tube (ovipositor) to bore into the gall and lay an egg on the helpless gall maker.

imagesThe galls cause the upper surface of the leaf to lighten in color and form a kind of blister that is often ringed with a yellow halo. Severe infestations will cause the leaf tips to turn brown. Heavily damaged leaves may curl and fall from the tree and the entire crown of the tree may be affected. Each gall contains a single wasp larva that feeds on the inner lining of the gall. The galls drop to the ground when they have matured. The activity of the larva inside the gall actually makes the gall jump around on the ground after they have fallen from the tree. The insect overwinters inside the gall. In the spring, the females emerge and lay their eggs in newly opened leaf buds. The galls form in response to chemicals in the larva’s saliva.

Gall makers must attack the plant at a very precise time if normal plant tissue is to be successfully stimulated to form a gall. It has been shown that trees whose buds open earlier than nearby trees have larger numbers of these galls than trees whose buds opened later.

Let us look at the below news article demonstrating the effects of gall wasps damage;


Tiny insect menace chokes trees across Cape Cod

20 Oct, 2013

DENNIS, Mass. — A minuscule menace is buried in the gnarled, deformed limbs of black oak trees across Cape Cod, slowly choking them to death.

Its common name — the crypt gall wasp — is like something out of a horror movie, but for property owners, the evil it wreaks is all too real.

Hordes of the tiny wasps deposit their eggs in the trees’ new spring growth. The larvae grow inside the wood and form swelled chambers known as galls.

A year later, the adult wasps — measuring only 5 millimeters — emerge through pinprick holes in the wood and repeat the cycle over again, cutting off the system that distributes nutrients throughout the tree.

Starved of food, twig growth slows, leaves turn brown and eventually, if the infestation continues unabated, the tree may die.

Even though much is known about the tree-killing culprit, much is still a mystery, including whether it is a native or wash-ashore.

“So little is known about the life cycle,” Russ Norton, educator in horticulture at the Cape Cod Cooperative Extension, said.

Norton, who is monitoring a research site in Nickerson State Park in Brewster, and other researchers are working to fill in those gaps.

Recently, workers with Arborjet, a Woburn company that tests and sells tree injection systems and insecticides, took a stand against the crypt gall wasp in Dennis Village Cemetery, a setting seemingly made for the fight against the pernicious pest with the deathly name.

Arborjet is working with University of Massachusetts-Amherst professor of entomology Joseph Elkinton and one of his graduate students to study the best ways to deliver insecticide that will stop the wasps in their tracks.

Researchers are not even convinced the species has been correctly identified, Elkinton and Arborjet officials said.

“We’re starting from square one with this insect,” Elkinton said.

Widespread damage from the wasp became apparent on Martha’s Vineyard a couple of years ago, he said.

But, while a similar infestation on Long Island crashed after only three years, the outbreak on the Vineyard has lasted longer.

On Cape Cod, property owners and arborists started seeing widespread damage in 2012.

“You probably don’t even see the symptoms for two years,” Peter Wild, CEO and founder of Arborjet, said.

At the Dennis Village Cemetery, Arborjet’s Don Grosman demonstrated how the injection systems use the tree’s vascular system to transport chemicals to fight the wasps, Grosman said.

A small black plug called an arborplug is inserted into holes drilled into the trunk, he said.

A needle attached to a pressurized reservoir is then connected to the plug, forcing the chemicals into the tree’s active tissue.

The company is testing two solutions: TREE-age, which relies on emamectin benzoate, a pesticide that causes insect paralysis, and IMA-jet, based on imidacloprid, a pesticide derived from synthetic nicotine, according to the National Pesticide Information Center, a collaboration of the University of Oregon and the U.S. Environmental Protection Agency.

Unlike spraying or other methods, injecting the chemicals keeps them contained within the tree and out of the surrounding environment, Grosman said.

“We pride ourself in that we put everything into the tree,” he said.

Even so, only a small amount of each product is required, he said.

For a tree with a 20-inch diameter, only 8 grams of the solution is used, Grosman said.

Although work in Hawaii on a similar infestation in banyan trees has shown that the method works, the exact effects on the crypt gall wasps are not yet clear, Grosman said.

About 50 trees in Barnstable, West Harwich and Dennis were injected with the two chemicals. An additional 20 trees are being monitored as controls.

The effect on different levels of infestation is being studied, Grosman said.

The trees will be checked over several years to see how long the chemicals keep the wasps at bay.

So far, there are pockets of the infestation in black oaks across the Cape, he said.

“It’s widespread but at the same time it’s somewhat sporadic,” he said.

This could be because of changes in the weather such as drought or it could be because of other factors, such as disease or the amount of salt used on nearby roadways, Grosman said.

At the cemetery, digging for graves could even be a factor, he said.

Natural conditions could lead to a collapse in the wasp population, such as what happened in Long Island, he said.

Infestations of exotic species are the cost of climate change and global trade, Wild said.

Still, like so much else with the crypt gall wasp, there is much more to be learned, both men said.

Education is the first step, Wild said. “Usually by the time you call the arborist, it’s time to cut the tree down,” he said.

Once a gall begins to develop, it is almost impossible to stop or reverse its development. Unless registered insecticides can be applied when gall wasps are flying, they offer little or no effective measure of control. Lack of serious plant damage from leaf galls and the difficulty in proper timing of insecticide applications pose a strong argument against the use of insecticides to reduce galls on oak.

Moreover chemical control is seldom suggested for management of leaf galls on oak. Cultural methods of control may be effective in reducing the impact of these insects. Some fallen leaves may harbor various life stages of gall-producing pests. Therefore, it may be useful to collect and destroy all infested leaves. Some of these pests overwinter in twigs and branches of oak. Where such woody galls are detected, prune and destroy the infested plant material when the galls are small and have just started to develop. But this isn’t a 100 percent effective treatment and more treatment options need to be explored.

 C Tech Corporation can offer a solution in the form of their non-toxic, non-hazardous product Termirepel™. Termirepel™ is an eco-friendly insect aversive. It is available in the form of polymer masterbatches as well as lacquer form which can be coated on the trees or diluted and sprayed on them.



Wood Borers: Boring their way into our home

There was Bronze Age, Copper Age, Iron Age and many other eras during which images (12)the use of one material was prominent. After a particular era the importance of the precious material has toned down. Wood however is the only material which still has its important status since time immemorial. Although the wood has been replaced by metals, polymer, ceramic and other materials in many applications, wooden artifacts are still considered of great value. We still find people who fill their beloved homes with wooden furniture to make it beautiful and more authentic.

Wood is one of the oldest friends of man and is always found in proximity to download (2)them in the form of bed, dinner table, chairs, grandfather’s clock, grandpa’s arm chair and many more. Loving and decorating our homes with wooden furniture is fine but protecting them from some of the vile species is of utmost importance. Species which were meant to help environment by giving a hand in biodegradation of wood have actually now become a big menace. Species like termites, carpenter ants, etc. attack healthy wood and have the capability to turn them into dust. Apart from termites and carpenter ants, we also have wood boring beetles that vilify the wood.

About three hundred different species of wood-boring beetles are known to occur in our domestic woodwork indoors, but of these only seven are of frequent occurrence, and it is to the larval or grub stage that we apply the description images (11)‘woodworm’. Woodboring beetles are commonly detected a few years after new construction. There are three groups of wood-boring beetles—powderpost, deathwatch, and false powderpost.

Many different types of wood structures and commodities have been damaged by these wood borers. Timber, planks, musical instruments, and wood carvings are the examples of the commodities damaged.

The wood borers especially powder post beetles do significant damage to wooden commodities, much more than that done by carpenter ants. The damage is done by the larvae that feed and reduce the wood to a fine powder or mass of small pellets and create narrow, meandering tunnels in the wood.

After the adult female emerges, she seeks other open-grained wood and deposits images (8)an egg in a pore. After hatching, the larvae eat their way into the wood, completing the cycle in about one year. This process may be repeated on the same piece of wood one quarter to one half inch from the emergence of the hole. Wood finishes: varnish, paint and waxes prevent an infestation. However, the insects already inside the wood will continue to thrive and eventually will emerge through the treated surface.

images (4)The lumber supply may have contained wood infected with beetle eggs or larvae, and since beetle life cycles can be one or more years, several years may pass before the presence of beetles becomes noticeable. In many cases, the beetles will be of a type that only attacks living wood, and thus incapable of “infesting” any other pieces of wood, or doing any further damage.

There are several indicators that wood-boring beetles are present. Probably the images (5)most common sign of a wood-boring beetle infestation is the presence of holes chewed by the adult beetles upon emergence. Another indicator is a powdery material called frass that beetles often produce while feeding. Frass is plant fragments made by a wood-boring insect; it is usually mixed with excrement. The beetles push the frass from the holes they have made in the infested wood. This frass usually gets piled below the holes or in cracks in structures. The consistency of the frass ranges from very fine to coarse, depending on the species.

Wood_Destroying_InsectsSometimes an infestation is indicated by the presence of wood-boring beetle adults. Adult beetles that emerge in confined structures are attracted to lights or windows and may accumulate at these locations.

Other signs of an infestation include stained wood or a blistering appearance on the wood surface caused by larvae tunneling just below the surface. Less commonly, immature beetles produce audible rasping or ticking sounds while chewing on the wood. These chewing sounds are most often heard during quiet times at night.

To stop this night time chirping steps have to be taken at root level i.e. the lumber from which the wooden commodities are made should be protected from these borers. To curb this problem of the wood borer, a unique solution in contrast to the typical hazardous, non-effective has to be adopted. And there is a solution,
a Green solution provided by C Tech Corporation: TERMIREPEL™. Termirepel™ is a non-toxic, non-hazardous and environment friendly product, with a high efficacy to repel insects like wood borers from the wood. Termirepel™ is a multitasking product; along with wood borer it protects the wood from vicious termites, notorious carpenter ants and other insects. Termirepel™ in solution form can be injected at high pressure in the lumber so as to prevent the infestation. It is also available in lacquer form which can be applied on the furniture, patios, floor as coating so as to prevent further infestation.

Webworm spinning a deadly web around your trees…

Webworms are the caterpillar form of a small white moth. The moths fly around during the summer laying their eggs on the underside of tree leaves. The moths seem to prefer alder, willow, cottonwood, apple, pear, peach, pecan, walnut, elm, and maples, but will eat a very large variety of trees and shrubs.

7The fall webworm, Hyphantria cunea, is a moth in the family Arctiidae known principally for its larval stage, which creates the characteristic webbed nests on the tree limbs of a wide variety of hardwoods in the late summer and fall. The moth is native to North America, ranging from Canada to Mexico, and is one of the few insect pests introduced from North America into other continents all over the world. It now has occupied probably its entire range in Europe from France to the Caspian Sea in the east. It has also penetrated into Central Asia. It has spread into China, southern Mongolia, Korea and southern Primorsky Krai of Russia and is now considered holarctic in distribution.

One or two generations of the pest occur in a year. However, in Tennessee several generations may occur in a year. This pest tends to go through periodic population explosions. Outbreaks every four to seven years may last for two to three years.

4The adult moth lays her eggs on the underside of leaves in ‘hair’-covered clusters of a few hundred. Eggs hatch in about a week. The caterpillars are highly variable in coloration, ranging from a pale yellow, to dark grey, with yellow spots and long and short bristle. The maximum length is 35 mm. Webs are progressively enlarged, and much messier looking than those of other caterpillars. Larvae feed inside the tents until the late instars. Very young larvae feed only on the upper surfaces of leaves. Later, they consume whole leaves. The larval stage lasts about four to six week. The larval stage of this pest skeletonizes and consumes leaves inside the protection of a tent-like web that they enlarge as they require additional food and grow. On shade trees webs usually occur on occasional branches. The fall webworm feeds on just about any type of deciduous tree. It feeds on almost 90 species of deciduous trees commonly attacking hickory, walnut, birch, cherry, and crabapple wherein leaves are chewed; in result the branches or the entire tree may become defoliated.

The fall webworm is a widely distributed native pest of shade trees and shrubs and appears from late summer through early fall. This species acts similarly to the eastern tent caterpillar, but the fall webworm constructs its nest over the end of the branch rather than at tree crotches. The large conspicuous webs contain caterpillars, dead partially eaten leaves, and fecal droppings.

imagesThis pest usually eats leaves late in the season and the nests are generally concentrated to limited areas. Although trees experience heavy damage from webworms in the fall, it is the summer defoliations that cause the most stress on the trees. Summertime is when pecan trees are actively developing their nut crop and storing food for the winter in their roots. By the time defoliations occur in the fall, the impact to the tree is minimized because it has stored its winter food and produced its pecans. Fall webworms in South Texas prefer pecan trees to most other trees, but will munch on mulberry, hickory, oak, willow or redbud just as readily. The webs are made by groups of caterpillars hatched from the same egg mass. Webworm caterpillars and moths are active at night when most of their predators (paper wasps, hornets, and birds) are inactive. The caterpillars feed on leaf material and leave the stems and veins behind. Although these caterpillars are hairy, they do not sting; however, they can cause an irritating rash if their hairs come in contact with human skin.

Webworms enclose small branches and leaves in their light gray colored webs. Constant infestations of individual trees will cause limb and branch diebacks. There are several chemicals that help to control the webworms, but they may not be practical due to the problems related to application complications in larger trees.

A sure and effective way of combating fall webworms was devised by C Tech Corporation in the form of their product Termirepel™. Termirepel™ is a non-toxic, non-hazardous, environment friendly insect and pest aversive. Majorly targeted at curbing the termite menace, it is 100% effective against host of other insects and pests like webworms, beetles, etc. Termirepel™ is available in liquid concentrate form which can be diluted further and made into sprays that can replace conventional harmful insecticides. The spray can then be just sprayed on the trees or plants affected.

Termirepel™ is also available in the form of lacquer which can be applied on the trees and the surrounding areas. Termirepel™ is unique in its aspect that it works by the mechanism of repellence and not by killing. Thus, target as well as non-targeted beneficial species are not harmed but are merely kept away from the application.

USA invaded – by crazy ants!!

p5So it is proved! Humans are not the only species who can be attributed to being crazy at times. They share the title with a particular type of ants called “crazy ants”. Crazy ants called so because of their erratic behavior actually are ants that belong to the genus Paratrechina from the subfamily Formicinae. Over 150 species and subspecies are described, some of which occur on every continent (except Antarctica). They form large colonies in open soil or under rocks or other objects, or in rotten wood on the ground. Specifically, Paratrechina longicornis occurs around the world. It is also known as ‘Longhorn ants’. They do not bite or sting people. Longhorn crazy ants are able to reproduce with their siblings without any negative effects of inbreeding. This has allowed them to become one of the most widespread invasive ants in the tropics. The crazy ant is found in various parts of the world and is not native to the United States (Smith 1965). While found in tropical cities worldwide, it was thought to be of either Asian or African origin. In fact, Wetterer (2008) argues that Paratrechina longicornis is the most “broadly distributed of any ant species.” Colonies of crazy ants are moderate to very populous. This species is a pantropical tramp that is easily dispersed by human activity. However, while the term ‘crazy ant’ is officially identified with this species, there are other closely related ant species that are also called ‘crazy ants’.

p3There is another species of crazy ants called Nylanderia fulva. These are an invasive species of ants. They are known as Rasberry crazy ant or tawny crazy ant originally found in Houston, Texas. While this species is part of the Paratrechina or “crazy ant” complex (group named because of the ants’ random, nonlinear movements), the media and others in Texas are also calling it “Rasberry” after the exterminator Tom Rasberry, who first noticed the ants were a problem in 2002. A large infestation is currently present in at least 20 counties in Texas. The ants appear to prefer the warmth and moistness of the coast. The colonies have multiple queens. Nylanderia fulva appear to displace other ant species, including red imported fire ants  most likely due to exploitative and interference competition. The ants are not attracted to ordinary ant baits, are not controlled by over-the-counter pesticides, and are harder to fully exterminate than many other species because their colonies have multiple queens. Scientists have described the ants as having overrun Texas since the early 2000s.

The crazy ant has achieved pest statusimages across the United States. It has been found on top floors of large apartment buildings in New York, hotels and flats in Boston and in hotel kitchens in San Francisco, California. It can be a significant agricultural pest as it assists in the distribution and/or protection of phloem-feeding Hemiptera, such as mealybugs, scale insects, and plant aphids (Wetterer 2008). The crazy ant is an agricultural and household pest in most tropical and subtropical areas, and is a pervasive indoor pest in temperate areas. It has the ability to successfully survive in highly disturbed and artificial areas, including ships at sea. Since it can live indoors with humans, there is no limit to the latitude where it can exist!!

There is alarming news for the residents of the southeastern states of USA as was reported by Danielle Elliot of CBS News on 1st July, 2013. An astonishing numbers of crazy ants have been reported to be swarming towards their states. USA Today reported University of Texas research assistant Ed LeBrun saying these ants have since spread to about 50 counties across Texas, Florida, Mississippi and Louisiana. They nest everywhere from crawl spaces and walls to electrical wires and small circuits. Researchers at Texas A&M University say they cause about $146.5 million in electrical damage each year. In a study published in April, researchers from Texas A&M University found that fire ants are able to fend off crazy ants in most situations. But that shifts when crazy ants are restricted to a low-sugar diet, as happens when fire ants consume most of the available food. When consuming a low-sugar diet, crazy ants become stronger and more aggressive, and able to defeat the fire ants. When UT researchers recently investigated two crazy ant invasion sites, they found the red ant population decimated — a sign that the crazy ant may quickly reign supreme in the southeastern region.

A very peculiar thing has been noted about these crazy ants. They have a penchant for electrical appliances. As Mary Beth Quirk of The Consumerist reported on 2nd July, 2013 these ants can make a meal of almost any electrical gadget from a cell phone to an air conditioner! They enter these gadgets and make them their home. They can chew on the internal wires thus causing a short circuit. If one gets electrocuted, its death releases a chemical on a cue to attack as they recognize a threat to the colony, said Roger Gold, an entomology professor at Texas A&M. “The other ants rush in. Before long, you have a wall of ants,” he said. Why they are attracted to electrical equipment is still a mystery.. But various theories have been postulated regarding this most credible ones being that they sense the magnetic field surrounding wires with electric current flowing through them. Or, they might prefer the heat byproduct of resistance in the wires. However, it could simply be they are searching for food or a nesting location that is easy to defend.

The Weekly World News on 9th June, 2013 reported that the crazy ants in Texas and Mississippi were destroying property and attacking humans!! The Crazy Ant Poison that U.S. Exterminators use only stops them for a day, and then a fresh horde shows up, bringing babies. Controlling them can cost millions of dollars.  And there’s no surefire way of controlling them. If 100,000 are killed by pesticides, billions more will follow.

The current method of controlling them involves the use of a toxic product called Fipronil. Fipronil is a broad spectrum insecticide that disrupts the insect’s central nervous system. Fipronil is a slow acting poison. Its wildlife impacts include:

1) Fipronil is highly toxic to fish and aquatic invertebrates.

2) Fipronil is toxic to bees and should not be applied to vegetation when bees are foraging.

3) Fipronil has been found to be highly toxic to upland game birds.

Thus an alternative non-toxic and eco-friendly solution needs to be devised to combat this ever growing problem of crazy ants. Termirepel™ can provide us the much required ray of hope in this increasingly hopeless situation. Termirepel™ is a unique non-toxic and eco-friendly product which works by the mechanism of repellence and not killing. Also it ensures that the ant infestation will not recur.

Butterflies- magnificent but endangered…

butterfly.Butterflies are magnificent creatures- vibrant and colorful. They are very important for our ecosystem. Some butterflies have evolved symbiotic and parasitic relationships with social insects such as ants. Some species are pests because in their larval stages they can damage domestic crops or trees; however, some species are agents of pollination of some plants, and caterpillars of a few butterflies   eat harmful insects. Butterflies exhibit polymorphism, mimicry and aposematism. Butterflies may have one or more broods per year. The number of generations per year varies from temperate to tropical regions with tropical regions showing a trend towards multivoltinism. Butterflies feed primarily on nectar from flowers. Some also derive nourishment from pollen tree sap, rotting fruit, dung, decaying flesh, and dissolved minerals in wet sand or dirt. Butterflies are important as pollinators for some species of plants as they can carry pollen over long distances.

Monarch_Among the many species of butterflies a special mention has to be made of the truly breath taking Monarch butterflies. Monarch butterflies named so because of their huge size are also called as wanderers mostly because of the characteristic trait they exhibit of migration. These butterflies are famous for their southward migration and northward return in summer from Canada to Mexico and Baja California which spans the life of three to four generations of the butterfly. Monarch butterflies are one of the few insects which can cross the Atlantic. Monarch butterflies primarily feed on milkweed plants which contain cardiac glycosides which make them distasteful as preys and thus protect them from their predators.

Decline in insect populations over long periods is viewed as a natural phenomenon but this is   not true in case of Monarch butterflies. “Monarchs have been faced with the loss of habitat for many years”, said Jen Baker, Head-of-the-Lake Land Trust Program coordinator for the Hamilton Naturalists’ Club.

egg on milkweedMilkweed, the Monarch larvae’s main food source as well as where they lay their eggs, has been depleting. The main reason for this steady decline is the unrestricted use of pesticides and weedicides. These harmful and toxic chemicals might protect the other plants from insects but they sure manage to kill the milkweed plant. The number of milkweed plants has decreased by 58 percent from 1997 to 2010 almost entirely from losses in cultivated fields due to indiscriminate use of herbicides. An army of volunteers in the U of M-based Monarch Larva Monitoring Project has been collecting data on the numbers of monarch eggs per milkweed plant in more than 800 milkweed patches around the country Also, since monarchs lay more eggs on milkweeds if they’re in cultivated fields, egg production was disproportionately affected by the loss of agricultural milkweed plants. The researchers estimate that between 1999 and 2010, monarch egg production in the Midwest dropped by 81 percent.

Christine Dell’Amore of National Geographic News wrote in her article dated 18th March, 2013 that in December 2012, scientists surveying Monarch habitat in Mexico’s Monarch Butterfly Biosphere Reserve found the insects  occupied 59 percent less land than the previous year—the smallest area recorded in 20 years. Nine butterfly colonies were found in just 2.94 acres (1.19 hectares) of land, compared with 7.14 acres (2.89 hectares) in 2011 and a high of 44.9 acres (18.19 hectares) in 1997, according to the report, released March 13.

This is alarming news for the Monarch butterflies as well as us since widespread depletion of Monarch butterfly populations will have a direct effect on the pollination of some flowers and subsequently disturb the food chain. Thus it is the need of the hour to curb the use of toxic and harmful chemicals as weedicides and switch over to a more environment friendly as well as non-toxic way to protect the plants while ensuring that non-target species like butterflies are not harmed in any way. Termirepel and Rodrepel are coming of age products which have the unique attributes of being non-toxic and environment friendly insect and pest aversives. They are meant to repel and not kill the target species and have no effect whatsoever on non-target species like butterflies which are very helpful in pollination.

Termirepel™ against Spruce budworm

downloadSpruce budworm is one of the most damaging native insects of spruces and true fir in the USA and Canada. Their food of choice is conifers mainly balsam fir, white spruce and red spruce. During light or moderate infestations the damage is restricted to a partial loss of new foliage, particularly in the upper crown of the tree. During a major outbreak, tens of millions of hectares of trees can be severely defoliated by the insect. This in turn can result in significant losses of important timber and non-timber resources, negatively affecting the forest industry and forestry-dependent communities. Spruce budworm outbreaks have devastated huge areas of forests on a more or less regular basis since the 18th century.

Spruce budworms and its relatives are a group of closely related insects in the genus Choristoneura. There are nearly forty Choristoneura species, and even more subspecies, or forms, with a complexity of variation among populations found throughout much of the United States and Canada, and about again this number in Eurasia.

download (2)Adult moths are about 1/2 inch (12.7 mm) long and have a wing-spread of 7/8 to 11/8 inches (22 to 28mm). Moths of both sexes are similar in appearance, although the females are a bit more robust than males. Both sexes fly. The gray- or orange-brown forewings are banded or streaked, and each usually has a conspicuous white dot on the wing margin. Eggs are oval, light green, and about 3/64 inch (1.2mm) long and overlap like shingles. The adults mate, and within 7 to 10 days, the female deposits her eggs and then dies. Each female deposits approximately 150 eggs, usually on the underside of conifer needles. Eggs are laid in one to three-row masses containing a few to 130 eggs, with an average of 25 to 40 eggs per mass. Larvae hatch from eggs in about 10 days. Larvae do not feed, but seek sheltered places under bark scales or in and among lichens on the tree bole or limbs. Here, they spin silken tents in which they remain inactive through the winter.

download (1)The native spruce budworm is a major defoliator of conifer forests, where it attacks mainly balsam fir and spruces and occasionally other conifer species. In the mid-1980s, the spruce budworm destroyed more than 10 million cubic meters of wood in Quebec, Canada alone. The larvae are to be blamed for this. They first mine or tunnel into year-old needles, closed buds, or newly developing vegetative or reproductive buds. Larvae prefer buds but will also attack old needles. The first symptoms of damage are usually frass and silk webs in buds or on last year’s needles. Tree crowns may appear brown as a result of partly chewed needles, dead buds and frass being webbed together and thus held at branch tips to dry. During outbreaks, it is common to see large numbers of caterpillars hanging from the ends of silk threads. This allows them to spin further down the tree canopy, or to be carried considerable distance by air currents. In light infestations, partial loss of new foliage, particularly in the upper crown, may occur. In heavier infestations, more serious defoliation may result. Defoliation for three years or more will reduce tree vitality and may produce top kill of leaders and some terminal branch shoots. Five to seven successive years of defoliation will lead to tree mortality. A single, complete defoliation commonly kills conifers.

The availability of extensive forests of susceptible host trees is a primary contributor to the development of widespread outbreaks, mostly by supporting the survival of small larvae and maturation of moths that reproduce and migrate to new areas. The last extensive outbreak of spruce budworm in Canada reached its peak in the 1970s, damaging more than 50 million hectares. Steady increase in the area of forest damaged by spruce budworm has been observed in eastern Canada since 2006, perhaps heralding a new, extensive outbreak in that part of the country. The damage caused by this worm goes into millions of dollars annually in the USA as well as Canada.

Let us see the following news article:

Bracing for spruce budworm assault

Chris Morris

Legislature Bureau

18 Jul 2013 07:46AM

FREDERICTON – Researchers are hunting for ways to out manoeuvre the spruce budworm as the insects begin massing for a major assault on the forests of New Brunswick and eastern Canada. Rob Johns, a researcher with the Canadian Forest Service in Fredericton, said Wednesday the budworm outbreak in Quebec is expanding and there are fears the infestation could spread into New Brunswick in the near future.“It will come pretty quickly when it does come,” Johns said in an interview. He said he was looking at video sent to him earlier this week of a mass migration of budworm moths across the St. Lawrence River to Rimouski.

“There were millions flying around in this parking lot to the point where you could scoop them up in your hands,” he said. Johns said the budworms have caused severe to moderate damage over as much as six million hectares of Quebec forest so far. He said the outbreak has been roughly doubling since it first began in the Baie Comeau area in 2006. Spruce budworm is a forest insect pest native to North America whose larva feed on balsam fir and spruce trees. Historically, outbreaks have occurred every 30 to 50 years in northeastern North America.

The last outbreak of spruce budworm began in roughly the 1970s. The last significant spruce budworm damage observed in New Brunswick occurred in 1995.

Johns said that during the last major outbreak, 51 million hectares were infested throughout northeastern North America and “40 per cent of the trees hit heavily by the budworm died.”

“The spruce budworm caused significant tree mortality and volume loss during the last outbreak,” the New Brunswick Department of Natural Resources said in a statement.

“It is uncertain at this point how severe the next outbreak will be in New Brunswick. However, we can expect that an uncontrolled spruce budworm outbreak will cause damage to our spruce and fir forests, resulting in potentially significant reductions to the amount of timber volume available for harvest and possible impacts on other forest values such as old spruce-fir wildlife habitat.” There are predictions a spruce budworm infestation could begin in earnest in New Brunswick in two years. The infestation in Quebec has reached the Gaspe, just a few kilometers from the New Brunswick border. Johns said governments, researchers and industry want to be prepared for the spruce budworm infestation this time and are studying ways to minimize the impact.

“The idea right now is we’re hoping that if we can start treating populations at low densities before they actually get to these huge epidemic levels then we can possibly keep them at bay and maintain a low level of infection,” he said.

“We are starting to test this early intervention strategy where we are actually trying to treat some of these very small populations.”

Johns said tests on small areas are being conducted in Quebec, but it is still too early to say whether it will be effective.

It’s expected the Madawaska region will likely be the first hit in New Brunswick.

Spraying for the spruce budworm costs approximately $80 per hectare. For a moderate outbreak, spraying could cost up to $80 million or, in the event of a crisis, roughly $200 million.

The cost would likely be split between different levels of government and industry.

The budworm problem has been a consistent and pestering one since the past several years. North America and especially Canada has suffered a lot due to this pesky pest. The hectares of forest land lost to this pest are on the increase and will further continue if appropriate steps are not taken. Outbreak of budworm infestation is quite sudden without a preamble.

Termirepel™ is a non-toxic, non-hazardous insect and pest repellant. Primarily designed to be used as a termite aversive, it is highly effective against a host of other insects and pests. It works by the mechanism of repellence by which it ensures that the target insect or pest stays away from the application without resorting to killing it. Termirepel™ is available in liquid form which can be mixed with paint and applied on conifers. It can also be used in the form of a spray.








Bed bug- The peace pillager!!

Ever been woken up from your blissful slumber by the tingly and crawly sensation of something wandering all over you??

Caution: Don’t shrug it off as just a feeling… you are not imagining it, it’s real, and it’s a bed bug!!

Bed bugs are the uninvited guests of the rich as well as poor. They are like the unwelcome party crashers that we all detest!! The common bed bug (Cimex lectularius) has long been a pest – feeding on blood, causing itchy bites and generally irritating their human hosts.

download (4)Bed bugs are basically parasitic insects of the cimicid family that feed exclusively on blood. The name “bed bug” is derived from the preferred habitat of Cimex lectularius: warm houses and especially nearby or inside of beds and bedding or other sleep areas. Bed bugs are mainly active at night, but are not exclusively nocturnal. They usually feed on their hosts without being noticed. Bed bugs are attracted to their hosts primarily by carbon dioxide, secondarily by warmth, and also by certain chemicals. Bedbugs prefer exposed skin, preferably the face, neck and arms of a sleeping individual. Although under certain cool conditions adult bed bugs can live for over a year without feeding, under typically warm conditions they will try to feed at five to ten day intervals and adults can survive for about five months without food.

images (3)It takes between five and ten minutes for a bed bug to become completely engorged with blood. In all, the insect may have spent less than 20 minutes in physical contact with its host, and it will not attempt to feed again until it has either completed a molt or, if an adult has thoroughly digested the meal.

Once feeding is complete, a bed bug will relocate to a place close to a known host, commonly in or near beds or couches in clusters of adults, juveniles, and eggs which entomologists call  harborage areas or simply harborages to which the insect will return after future feedings by following chemical trails. Bed bugs use pheromones and kairomones to communicate regarding nesting locations, feeding and reproduction.

Bed bugs can also be detected by their characteristic smell of rotting raspberries.

“Wherever bed bugs are, one thing holds true – they cause a lot of troubles.”

imagesIn the recent spate of events worldwide, beg bugs are proving to be a beneficial source of income for lawyers!! As was reported by Mail online on 3rd June 2013, a Maryland woman was awarded $800k after suing landlord over bedbug infestation that caused her to lose “practically everything”!! The ruling was one of the largest – if not the largest – amounts awarded in this sort of law suit, was the experts’ opinion.

In another recent incident reported on 30th July, 2013 the very famous Dunn Hotel in North Carolina was closed owing to a suspected wide spread bed bug infestation. Investigators discovered remnants of bedbugs in bed frames and windowsills.

In December 2010, Adarien Jackson of Severn, Maryland filed a bed bug suit against a furniture store where she brought her sons’ bunks. A little more than a year later, the mother-of-two was favored by jury granting her $225,000 in damage.

images (2)For most people, bedbugs are not life-threatening — at least, not physically. Between 50% and 70% of people are allergic to the bites, and will develop itchy welts, similar to mosquito bites. In a few cases, the bugs have been linked to asthma attacks, and persistent assaults from the vampiric visitors can potentially lead to anemia. But while the physical effects of bedbugs are negligible, their emotional and psychological impact can be devastating. Dr. Jones, an associate professor of entomology at Ohio State University notes that “bedbug victims can lose lots of sleep and can become very anxious, or even panic-stricken.” Some develop delusional parasitosis, a mental disorder in which sufferers become convinced that they are being bitten by bugs, even when they are not. Jones stresses that this condition can have brutal physical and emotional effects.
The Environmental Protection Agency has declared bedbugs a public health pest and, in April 2009, it held a national bed bug summit to solicit recommendations for dealing with the growing menace. In it, the group highlighted the emotional and psychological effects of bedbugs, arguing that the definition of public health needed to be enlarged to include “overall wellness [and] mental health.” It also addressed the dangers of bedbug-inspired insomnia, noting that loss of sleep could be disastrous for “pilots, flight attendants, and other professionals.”

Thus the bed bug menace needs to be dealt with in an effective and permanent way!! C Tech Corporation has with the aid of green technology and great vision, designed a product that provides an effective solution against bed bugs. Termirepel ™ is a non-toxic, non-hazardous insect and pest aversive. Basically designed to combat termites, it works effectively against a multitude of other insects including bed bugs.

Termirepel™ works by the mechanism of repellence by virtue of which it does not allow the insect/pest to come near the application and thus it negates the possibility of an infestation. Moreover it is available in the form of polymer compatible masterbatches as well as in lacquer form to be applied on wood and other furniture. Thus it is easy to apply and safe to use.

Termirepel™ can guarantee all of us the sweet joy of an uninterrupted sleep that we deserve by keeping the crawlers at bay!!


Australia held hostage- by vicious termites!!

“Termites are a bane to human existence!!”

Of the 2,300 species of termites known to exist in the world, only 183 are known to cause damage to structures, and of these, 83 have a significant economic impact!


images (1)Subterranean termites account for about 80 percent of the economically important species, and the genus Coptotermes contains the largest number of economically important species. Many thousand dollars are spent annually to combat these inconspicuous creatures. Control of subterranean termites and repair of their damage in the United States results in a total economic impact of about $6.0 billion per year. These Subterranean termites attack untreated wood and some also attack live trees. They are a huge problem in moist, warm climates along the western, southern, and southeastern coasts of the continental United States and in subtropical and tropical locations of the United States and its protectorates and possessions. They pose a significant hazard to the numerous Eucalyptus trees planted as ornamentals, as windbreaks, or for fiber.


images (6)They are the cause of great economic losses of timber and related services all over the world especially in Australia. Only a few of the more than 300 species found in Australia are responsible for structural timber damage. In the Australian Capital Territory (ACT) region there are approximately 30 kinds of termites, although only a few cause extensive damage to sound timber. The two species that do most damage are Coptotermes frenchi and Nasutitermes exitiosus. Nasutitermes exitiosus are also associated with trees. Coptotermes frenchi and Nasutitermes exitiosus can establish nests if winged adults discover a damp area in the house, such as a shower recess or where the hot water system has leaked. They survive in places where water is readily available.


images (2)Nasutitermes exitiosus species is found most predominantly in southern Queensland and across most of the southern states of Australia. It is easily recognizable because, unlike other termite species, it has a dark pointed head, which makes it stand out. Nasutitermes exitiosus builds a mounded nest that is generally between 250mm and 700mm high. Their nests are generally found under decks and in sub-floors areas. They can cause a huge amount of damage to most wooden structures, especially hardwood fences, posts and sub-floors places where the timber is in direct contact with the earth or if the wood is damp or rotting. While this species is not as destructive as other termite species, left to their own devices they can still cause some serious problems. They are more of a problem for older homes that have not been well maintained where the timber has become wet. Interestingly this termite species has its own qualms regarding food. They do not like pine varieties, preferring the sapwood of hardwoods.

Defensive behavior of these termites was observed by scientists from Cornwell University, NY. The termites were confronted with live enemies like ants and other arthropods. It was observed that both soldiers and workers take part in the defensive actions. The weapon of destruction of the soldier termite is a spray from its frontal gland which causes irritation and has the capacity to hinder the mobility of the ant. The soldier’s secretion is an effective alarms pheromone. Once a target has been sprayed, the other soldiers converge around it. Attraction is effective around 30mm. The worker termites have no special weapons, but they can effectively bite. Ants may be crushed by the bites, or they may be slowed down by workers clamped to them with their mandibles and thereby rendered more vulnerable to being sprayed by soldiers. The substance in the secretion responsible for the alarm response remains unknown. The workers are essentially unalarmed by fresh secretion. Recruited soldiers tend to remain longer beside a “lively” sprayed enemy than beside one that has already ceased moving. It is suggested that in nature, sprayed incapacitated enemies might be covered over by the workers with feces and soil, a behavior that could bring about a timelier blockage of the alarm signal.

Nasutitermes exitiosus is almost invariably a mound builder in Canberra. If N. exitiosus is found it is likely there is a mound within 30-50 meters of the infested area, often in adjacent bush land. Nasutitermes exitiosus nests when opened have a distinct and characteristic odor which is thought to be associated with repellant exudates from the fontanelle at the tip of the nasus.

Another important species of termites which pose a threat to wooden structures are the widely infamous Coptotermes Frenchi. They can be found right down the east coast of Australia but are predominantly found in New South Wales and the Australian Capital territory (ACT) in particular, where it is rated as the most destructive termite species in the area. Coptotermes frenchi distribution extends from north Queensland to Western Australia in eucalyptus communities. Coptotermes frenchi has also become established in New Zealand, most likely introduced from Australia in imported logs.

images (4)They may travel underground up to 70m from the colony in search of food. They are particularly partial to eucalyptus and as such are commonly found in urban areas where eucalyptus is abundant. In the ACT many houses have pine or Oregon softwood frames, a favorite of this species. Because these subterranean termites can infest numerous tree species and wood in use, the presence of an acceptable host is not the critical factor. Rather, a suitable environment with an adequate supply of wood and appropriate temperature and moisture conditions are the key factors to their survival and proliferation. The initiation of a colony is a slow process, but wood in ground contact, moist wood in structures, and suitable host trees with scars or wounds at ports and storage facilities may provide an infestation site. The adults (alates) fly only about 100 m, but are capable of moving up to 1 km depending on wind conditions and weather.

These subterranean termites are highly destructive. Soldier termites produce milky liquid from a gland on their head when disturbed. Coptotermes frenchi is responsible for major damage to buildings, fences, posts, stumps and eucalypt trees. It is common for this species to devour timber framing leaving only a thin veneer. This species is the most shy of the destructive species; they will retreat from a location immediately (for the time being) if disturbed. They hollow out the upper part of the tree trunk. They feed on a range of timbers.

Nasutitermes exitiosus is almost invariably a mound builder in Canberra. If N. exitiosus is found it is likely there is a mound within 30-50 meters of the infested area, often in adjacent bush land. Coptotermes frenchi mostly nest in old eucalypt tree trunks. If these termites are detected, all large eucalyptus trees (trunks greater than 30 cm in basal diameter) or stumps within 60 meters should be checked. One indication of termite activity within trees is the presence of hollow broken branches. This is only indicative and a more reliable method is to test by drilling the tree. A drill auger (not larger than 19 mm diameter) should be used to bore holes towards the centre of the tree. If termites are present the centre will be hollow or filled with ‘mudguts’ and the auger will suddenly penetrate the tree easily. A thermometer may be used to determine if the nest has been located. Nests are a constant temperature of 300 deg Celsius. The installation of barriers, either physical or chemical, has also been used as a method to prevent termites from entering buildings.

Considering the potential for damage that these termite species have exhibited a reliable method to combat them needs to be devised. C Tech Corporation has come up with such a novel product in the form of Termirepel™. Termirepel ™ is a non-toxic, eco-friendly and completely non-hazardous termite repellant which is effective against even the most aggressive and destructive termite species like the ones encountered above!!

Termirepel™ works by the mechanism of repellence by virtue of which it does not allow the termites to come near the application and thus it negates the possibility of an infestation. The product is designed to not only counter the termite menace but is also effective against a host of other insects and pests. Termirepel™ can be applied over wooden articles in the form of a lacquer or finish. It is approved by NEA (National Environmental Agency) for use on wooden articles.

If Australia is to be protected against the vicious Nasutitermes exitiosus and Coptotermes frenchi Termirepel ™ is its best bet!!





The Asian Giant Hornet- A threat to honey bees…

Ever heard of the phrase “to stir up a hornet’s nest”??

Usually used to denote an action leading to undesirable and grave consequences the phrase stands true to itself. Indeed the hornets are scary and dangerous creatures and you sure don’t want to stir up their nest!!

download (1)The Asian Giant Hornets are the larger breed of wasps that are eusocial in nature much similar to bees, ants and termites. There are plenty of varieties of hornets, and some of them are known for their venomous stings. The most feared among them is the deadly Asian giant hornet which has the most venomous sting of all insects. This species is native of the tropics and can be found in numbers especially in eastern Asia. The Asian giant hornet – Vespa mandarinia is the world’s largest hornet, native to temperate and tropical Eastern Asia. It can be found in some regions of Russia, Korea, IndochinaNepalIndia, and Sri Lanka, but is most common in rural areas of Japan, where it is called giant sparrow bee. These hornets are aggressive and fearless which spells doom for their victims!

download (3)Their hierarchy is based on their ability to reproduce and hence is divided as the reproductive queens and sterile soldiers and workers. The average adult Asian hornet soldier or worker grows up to 4.5 cm and the queen about 5.5 cm in length. The wing span is about 76 mm and its 6 mm sting helps in injecting venom into the body of its prey. It has a wide head when compared to the other vespain species. The stinger of the Asian Giant Hornet is 1/4 inch long and because it has no barb, the Asian Giant Hornet is able to sting its victims multiple times.

The venom injected by the stinger is incredibly potent and contains eight different chemicals, each with a specific purpose. These range from tissue degeneration and breathing difficulties, to making the sting more painful and even attracting other hornets to the victim. Their venom contains a neurotoxin called mandaratoxin (MDTX), a single-chain polypeptide with a molecular weight of approximately 20,000 amu, which can be lethal even to people who are not allergic if the dose is sufficient. Being stung by one according to some accounts feels a lot like having a hot nail hammered into you!!

The Japanese giant hornet (Vespa mandarinia japonica) images (10)is a subspecies of the Asian giant hornet (V. mandarinia). It is a large insect and adults can be more than 4 cm (1.6 in) long, with a wingspan greater than 6 cm (2.4 in). It has a large yellow head with large eyes, and a dark brown thorax with an abdomen banded in brown and yellow.  They are nicknamed as “Yak killers” precisely because they’re capable of doing it! The Japanese Asian Hornet is the ultimate killer insect of Japan, responsible for 20 to 40 human deaths each year. As was reported by Japan Today on 27th September, 2010; 8 policemen were attacked by these hornets in a park while they were on duty.

The prime food of the Asian giant hornet is bees!! They love to feast on bees and other pollinators. The attack is carried out in a wonderful manner – two or three soldier hornets cautiously approach an identified nest while giving off pheromones. Pheromones attract the other hornets from the nest and together they attack the bee colony. Such synchronized attacks can completely devastate a honey bee colony as the bees stand no chance against these venomous creatures. Asian giant hornets in spite of being bee attackers never feed on them. Fact remains that they cannot digest solid protein. They never can feed on their prey – instead they attack large insects, chew on them and feed them to their larvae. The adult soldiers feed on an amino acid mixture that is secreted by the larvae. This clear liquid is the diet for these humongous hornets. Vespa Amino acid is strong in nutrients which help in keeping up the required nourishment for these large sized bugs. The saliva produced by the larvae of the Asian Giant Hornet is said to give them their renowned energy and stamina when consumed by the adult hornets on a regular basis. When chasing their prey, they have been reported travelling distances of up to 60 miles, at a top speed of 25 mph.

Interesting facts about these hornets:

  • Asian Killer Hornets are five times the size of European Honey Bees!


  • A single Asian hornet is capable of killing 40 honey bees within a minute!


  • 30 Asian giant hornets destroying the hives of 30k bees within 3 hrs time!

In the recent times the Asian giant hornet is said to have made its way to Britain where it is threatening the population of the European honey bees as these honey bees don’t stand a chance against the deadly hornets. Considering that the prime victims of these hornet attacks are our most important pollinators i.e. bees, the mayhem that they cause needs to be controlled!

C Tech Corporation has with the aid of green technology and great vision, designed the product Termirepel™ that can aid in the protection of honey bees from these vicious hornets. Termirepel ™ is a non-toxic, non-hazardous insect and pest aversive. Basically designed to combat termites, it works effectively against a multitude of other insects including wasps and hornets.

Termirepel™ works by the mechanism of repellence by virtue of which it does not allow the insect/pest to come near the application and thus it negates the possibility of an infestation. Moreover it is available in the form of polymer compatible masterbatches as well as in lacquer form to be applied on wood and other furniture. Thus it is easy to apply and safe to use. Also since it is non-toxic it will not cause any harm to the non-target species like bees.








Aphids threaten crops!

1 Aphids, also known as plant lice, are diminutive, soft bodied, pear shaped insects which feed on plants, typically during the spring and summer seasons. Aphids are amongst the most common type of garden pests and are commonly green in color, though they can also found in pink, brown, yellow and black. There are over 200 species of aphid s, some of which will only feed on specific types of plants, while the majorities are content to eat a myriad of different plants. Aphids are capable of asexual reproduction and can spawn throughout most of the year, sometimes producing nearly 100 young per aphid in the course of just one week. Because reproduction occurs so rapidly, what starts out as a small aphid problem in a garden, farm or greenhouse can quickly become an infestation without adequate intervention.

Aphids are mostly less than 1/4 in. (6 mm) long. Some are wingless; others have two pairs of transparent or colored wings, the front pair longer than the hind pair. In typical aphids (family Aphididae), two tubes called cornicles project from the rear of the abdomen and exude protective substances. Aphids feed by inserting their beaks and sucking sap from stems, leaves, or roots.

downloadMany kinds of aphids secrete a sweet substance called honeydew, prized as food by ants, flies, and bees. This substance consists of partially digested, highly concentrated plant sap and other wastes, and is excreted often in copious amounts. Certain aphid species have a symbiotic relationship with various species of ants that resembles the relationship of domestic cattle to humans; hence the name “ant cows” for aphids. The ants tend the aphids, transporting them to their food plants at the appropriate stages of the aphids’ life cycle and sheltering the aphid eggs in their nests during the winter. The aphids, in turn, provide honeydew for the ants.

download (2)Damaging aphid populations may develop over a span of several years. Generally medium to low annual rainfall zones are at a greater risk than high annual rainfall zones. Although aphids usually arrive earlier in high rainfall zones, their populations are often kept at relatively low numbers. This is believed to be due to mortalities caused by a combination of strong winds and rain, high natural enemy numbers such as parasites, and fungi, which thrive in high humidity. Direct feeding damage, occurs when colonies of 30 or more aphids develop on individual growing tips.

The degree of damage depends on the varietal susceptibility, the growth stage of the crop, the percentage of plants infested, the number of aphids per growing tip, and the duration of the infestation. Feeding damage often has no obvious signs or symptoms, although heavily infested plants may be covered in black sooty moulds, which live on the sugary honeydew excreted by aphids, and flowers may be aborted. Other signs of damage include down curled leaves and wilting. The damage causes yield and quality losses, by reducing seed size and weight and numbers of pods per plant.

download (1)The damage done by aphids is due to a number of causes, including loss of sap, clogging of leaf surfaces with honeydew, and growth of molds and fungi on the honeydew. Leaf curl, a common symptom of aphid infestation, occurs when a colony attacks the underside of a leaf, causing its desiccation. The downward curl provides protection for the colony, but the leaf becomes useless to the plant. Some species also transmit viral diseases of plants. Among the aphids causing serious damage to food crops are the grain, cabbage, corn root, apple, woolly apple, and hickory aphids and the alder and beech tree blights. Direct damage caused by aphids feeding can cause yield losses of more than 50% in susceptible Lupin varieties. Yellow lupins are the most prone to aphid colonization and occasionally feeding damage may be so bad that crops fail to yield.

Let us take a look at the below article:

Aphids damage early crops

06 Aug, 2013 05:00 AM


There has been significant aphid damage to early sown crops, particular in central NSW.

Pest Facts reported there were many accounts of damage in the Central Tablelands region around Mudgee, NSW.

The damage began in July once the resistance imparted by seed treatment wore off.

Oats have been one of the worst impacted crops.

Oat aphid, corn aphid and rose grain aphid favor barley, but are found in all cereal crops. Heavy infestations of these sap sucking insects cause the crop to turn yellow, be stunted and generally appear unthrifty.

All three aphids can damage crops by feeding on them and in some instances by spreading barley yellow dwarf virus.


The above article shows the extent of damage these creatures can cause. There have been various other articles published which illustrate the extent of damage caused by aphids. According to a recent study by researchers at Iowa State University aphids has become a threat to soybean in the recent years because they possess a unique ability to block the genetic defense response of soybeans and may open the door for other pests to do even more damage to the crops. Their research further made significant contribution as the scientist stated that Aphids emerged as a serious threat to Iowa soybeans around 2000. The insects are native to Asia and most likely came to the United States via  international travelers or plants brought into the country.  In the years since, aphids have caused soybean farmers major headaches, reducing yields in affected fields by up to 40 percent, a scientist said.

These creatures thus cause a lot of damage in the agricultural sector. Also they invite more pests like the ants to the plants further endangering them. Conventional methods used to combat them include the use of toxic pesticides which are extremely hazardous to the environment. New methods need to be developed to do away with aphids for good. The method used should be 100% effective and should not endanger the environment in any way whatsoever.

Termirepel™ is a non-toxic, non-hazardous insect and pest repellant. It can be best described as a termite aversive. It is effective against a multitude of other insects and pests like weevils, beetles, thirps, bugs, aphids etc. It works on the mechanism of repellence and therefore does not kill the target as well as non-target species. Being non-toxic, it does not harm the soil and environment. Termirepel™ can be added to a thin agricultural film to protect plants and crops from insects like aphids. It can also be incorporated in irrigation pipes to ward of pests.



Termirepel™ in agricultural films: A solution to all our pest problems

a2Agriculture is still the means of livelihood for a vast section of human population all over the world. Inspite of the tremendous progress that has been made in this sector, it continues to be riddled with problems pertaining to pests. Pests are the nemesis of the agricultural sector. Every year millions of tons of crops are being damaged owing to pest damage. Currently 10-16% of global crop production is lost to pests. Crop pests include fungi, bacteria, viruses, insects, nematodes, viroids and oomycetes. The diversity of crop pests continues to expand and new strains are continually evolving. Losses of major crops to fungi, and fungi-like microorganisms, amount to enough to feed nearly nine percent of today’s global population.

Insects are responsible for two major kinds of damaged2to growing crops. First is direct injury done to the plant by the feeding insect, which eats leaves or burrows in stems, fruit, or roots. There are hundreds of pest species of this type, both in larvae and adults, among orthopterans, homopterans, heteropterans, coleopterans, lepidopterans, and dipterans. The second type is indirect damage in which the insect itself does little or no harm but transmits a bacterial, viral, or fungal infection into a crop. Examples include the viral diseases of sugar beets and potatoes, carried from plant to plant by aphids.

dCrops and agricultural produce are susceptible to damage by insects and pests at each stage from pre-harvest to post harvest level. Post harvest damage recorded in Asia alone is approximately 6%. Every year millions of dollars worth food grains are lost to pests! Furthermore according to survey by World Food Program there are 842 million undernourished people in the world today. That means one in eight people do not get enough food to be healthy and lead an active life. In such circumstances, such blatant wastage of food should be avoided at all costs. This is uninvited and unwanted charity!

bIn our efforts to stem the damage to agricultural produce owing to pests, we have taken refuge in the use of toxic pesticides. Although this has helped stem the damage to a considerable extent, they are not always effective. What they do simultaneously is irrevocable damage to our natural environment, having a negative effect on all its components. Toxic pesticides used rampantly in the agricultural sector worldwide contain extremely toxic potential carcinogens which are harmful to humans as well as to beneficial insect species like bees. Neonicotinoid which is principal components of numerous popular pesticides has been proved to be the sole cause of the Colony Collapse Disorder syndrome! It’s estimated that over the past five years, some 30 percent of bees in the United States have either disappeared or failed to survive to pollinate blossoms in the spring. That’s about 50% more than the rate expected. The problem is direr in some other countries. In Spain, recent data indicate a loss close to 80% of beehives.

The use of these toxic pesticides needs to be discouraged for the sake of the greater good. But at the same time crops need to be protected from the onslaught of vicious pests.

The use of agricultural films as a means to safeguard crops from pests has been explored since the past some years. Agricultural films are basically low weight LDPE or PE plastic films. Mulches, silage bags are just varied forms of a basic agricultural film. According to a new market report published by Transparency Market Research “Agricultural Films (LDPE, LLDPE, HDPE, EVA/EBA, Reclaims and Others) Market for Greenhouse, Mulching and Silage Applications Size, Share, Growth, Trends and Forecast, 2013 – 2019,” the global agricultural film market was valued at USD 5.87 billion in 2012 and is expected to reach USD 9.66 billion by 2019, growing at a CAGR of 7.6% from 2013 to 2019. In terms of volume, the global demand was 4,410.3 kilo tons in 2012 and is expected to grow at a CAGR of 5.7% from 2013 to 2019.” Thus we can see that agricultural film usage is growing at a fast rate.


Agricultural films are being used increasingly in a bid to preserve and nurture plant health by preventing water loss, UV stabilization to cool soil and prevent insect attack, etc. But after using agricultural film too, the plants can still be susceptible to pests. This is so as these agricultural films are usually made of plastics like Polyethylene (PE), LDPE, etc; which can be easily damaged or chewed through by rodents and other pests. This would effectively leave the plants vulnerable to further attack by pests. Agricultural films by themselves are not insect and pest resistant. The agricultural film will be useful to the plant only if it could prevent pests from attacking it.


Thus there is a need for addition of some kind of additive in the agricultural film so as to make it effective against insects and pests. Termirepel™ a product by C Tech Corporation is a non-toxic, non-hazardous termite and insect aversive. It is available in the form of a polymer compatible masterbatch and thus can be incorporated in the agricultural film during the manufacturing process itself. It is an inert compound and highly stable at high extrusion temperatures. Also it is stable within the polymer matrix and will not leach out in the environment. It is developed keeping the safety of the environment in mind and is therefore eco-friendly. Termirepel™ works on the mechanism of repellence whereby it acts on different levels ensuring that the target species is repelled away from the application. It does not kill and is therefore not life-threatening to the target as well as non-target species.

Termirepel™ is the right choice in our quest for alternative methods to protect crops from pest and in turn save agriculture!